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Gröbner bases

1. What its all about
A two-minute introduction to Gröbner bases.

2. Applications
- Solving equations
- Ideal theory

3. Theory
- Constructing objects - reduction and Buchbergers algorithm

4. How this assignement was carried out

5. Where to find Gröbner bases

6. Appendix:
- Software for Gröbner Bases
- Functions for Gröbner Bases in Maple
- WWW sites
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Computing with objects

Computing with even the simplest objects can be difficult and expensive.

Example: Computing with integers like  is expensive
(computation time, storage).

Solution: Approximate and use floating point numbers.

Problem: Approximation and original objects have different properties.

The integer has a successor ( ).

( )

The floating point number 10E500 does not have a
successor!
(10E500+1-10E500=01)

1. There are workarounds

10500

10500 1000…001

10500 1 10500 1=–+

Overview
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Applications

1. Example: Solving a system of equations

2. Methods offered by Gröbner bases
In what ways can Gröbner bases help when solving equations?

3. Ideal theory
Gröbner bases offers a complete solution to several ideal theoretic
problems like ideal membership.

4. Computational aspects
Things to think about when using Gröbner bases.
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Example

The theory tells us that the systems (1) and (2) have exactly the same set of
solutions.

1( ) xy 1 0=+

x2 x 0=+

 P xy 1 x2 x }+,+{=

Gröbner
Base

2( ) 1 x 0=+
y 1 0=–


 G 1 x y 1 }–,+{=

Applications
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Methods offered by GB

• Solvability
Do a system of equations have a solution?

• Finite/infinite number of solutions
Are there an infinite number of solutions (parametric solution) or not?

• Exact number of solutions
Determine the exact number of solutions without solving the system.

• Solving a system of equations
Two variants: Elegant and slow or hard and not-so-slow.

• Gröbner bases compared with numerical methods
Are Gröbner bases the solution to every problem?

Applications
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Theory
Term orderings

For univariate polynomials (in one variable) there is a natural ordering of
terms, but for multivariate polynomials (several variables) no such natural
ordering exists.

The two most common orderings are lexiographic and total degree.

Lexiographic ordering works just like when sorting words.

Total degree ordering is a two-step process: Sort terms by total degree and
sort terms of equal degree lexiographically.

To understand the lexiographic ordering, think of a term as a word. E.g the

term  should be sorted as the word xxzzz.

By default the ordering of variables are the usual one (i.e xx comes before xy)
but it is common to use a custom ordering of variables. E.g lexiographic orde-
ring with  will put xy before xx.

x2y0z3 x2z3=

y x>

a.2.1

Theory
Term orderings

• Lexiographic ordering (called ”plex” in Maple)

• Total degree ordering (called ”tdeg” in Maple)

1. Write each term as
a word.

2. Define ordering of
variables

3. Sort as when
sorting names

1. Sort by total degree
2. Sort terms of equal

degree lexiographi-
cally.

x y z> >

x2z xxz xxxyyy x3y3

x2y2z xxyyz xxxz x3z

x3y3 xxxyyy xxyyz x2y2z

x3z xxxz xxz x2z

x y z> >

xz xyz xyz xxy x2y
xyz x2z xxz xxz x2z

x2z x2y xxy xyz xyz

x2y xz xz xz xz

a.2.2



Methods offered by GB

• Solvability

Let  be an equation system written as a set of polynomials

and let  be the Gröbner base of . The system is solvable if and only if
 (  implies that the equation  has a solution which is a

contradiction).

Not solvable. Solvable.

P p1 … pr, ,{ }=

G P
1 G∉ 1 G∈ 1 0=

P xy2,{=
x 1,–
y 1– }

P xy2,{=
y 1– }

G 1{ }= G x 1,–{=
y 1– }

Applications
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Methods offered by GB

• Finite/infinite number of solutions

Let  be an equation system in variables  written

as a set of polynomials and let  be the Gröbner base of . Let

Then the equation system associated with  has finitely many solutions if

and only if there for all  is a positive integer  such that .

Finite number of solutions. Infinite number of
solutions.

P p1 … pr, ,{ }= x1 … xn, ,

G P

H hterm G( ){ }.=

P

xi m xi( )m H∈

P xy 1 x2 x }+,+{= P xy x2 x }+,{=

G 1 x y 1–,+{ }= G x2 x+ xy,{ }=

H x y,{ }= H x2 xy,{ }=

Applications
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Methods offered by GB

• Number of solutions

Applications

a.2.5

Methods offered by GB

• Solving a system of equations, lexical ordering

Lexical ordering leads to a triangularization of the system:

1.Solve for z (the ”smallest” variable according to ).
In this example the Gröbner base does not contain a polynomial that
depends only on z, so z can take any value.

2.Solve for y.
We have two equations that depends on z and y. The second equation
bounds y to 0.

3.Solve for x.
The first equation bounds x to 0.

x y z> >

zy 0=
x y 0=+

zx 0=

xy z2x 0=+








Gröbner
Base

x y 0=+

y2 0=
zy 0=






x y z> >

Applications
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Methods offered by GB

• Solving a system of equations, total degree ordering

Total degree ordering does not lead to a triangularization of the system:

Use a special function to solve for each variable.

xyz 8z2+ 0=

x2y 7z– 0=
2x 2y– 1+ 0=









Gröbner
Base

3z2 8z2y+ 0=

21z2 512z3+ 0=
2x 2y– 1+ 0=

28z– 4y3 4y2– y+ + 0=

16z2 2zy2 zy–+ 0=












Applications
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Methods offered by GB

Now we will solve the system in Maple using Gröbner bases:
1. Calculate the Gröbner base.
>G1:=grobner[gbasis]({z*x*y+8*z^2,x^2*y-7*z,2*x-
2*y+1},[x,y,z],tdeg)

G1:=[-28z+4y^3-4y^2+y,2x-2y+1,
16z^2+2y^2z-zy,21z^2+512z^3,3z^2+8yz^2]

2. Solve for one variable, e.g z.
>grobner[finduni](z,G1);

21z^2+512z^3
>solve(”);

0,0,-21/512
3. Repeat steps 4-8 for each solution w.r.t z (only one is shown here).
4. Substitute 0 for z in G1 and use the result to calculate a new Gröbner base.
>z:=0;

z:=0;
>G2:=grobner[gbasis](eval(G1),[x,y],tdeg);

G2:=[2x-2y+1,4y^3-4y^2+y];

Applications
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Methods offered by GB

5. Solve for x.
>grobner[finduni](x,G2);

x^2+2x^3;
>solve(”);

0,0,-1/2
6. Repeat the steps 7-8 for each solution w.r.t x (only one is shown here).
7. Substitute 0 for x in G2 and use the result to calculate a new Gröbner base.
>x:=0;

x:=0;
>G3:=grobner[gbasis](eval(G2),[y],tdeg);

G3:=[2y-1];
8. Solve for y.
>grobner[finduni](y,G3);

-2y+1
>solve(”);

1/2
We now have one solution:

(x,y,z)=(0,1/2,0)

Applications

a.2.6.4

Methods offered by GB

• Gröbner bases compared with numerical methods

Gröbner bases Numerical methods

Slow Fast

Exact solutions Approximate solu-
tions

Parametric solutions

Applications
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Ideal theory

With Gröbner bases, a number of problems in ideal theory are solved:

• Ideal membership
Is an element a member of a given ideal?

• Calculating with residue classes (modulo an ideal)

• Subideal
Given two ideals  and , are ?

• Proper subset
Given two ideals  and , are ?

• Intersection of ideals

• Intersection of residue classes

I J I J⊆

I J I J⊂

Applications

a.3

Computational aspects

• Total degree ordering is as fast as/faster than the ”best” lexiographic orde-
ring.

• Often high complexity

• Lexiographic ordering is very sensitive to different permutations of variables
(”unstable”)

Applications
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Theory

1. Construction of objects and calculus

2. Integers

3. Univariate polynomials

4. Multivariate polynomials

Z Z aZ⁄→

K X ] K X ] p〈 〉⁄[→[

K X1 … Xn, , ] K X1 … Xn, , ] p1 … pm, ,〈 〉⁄[→[

t

Construction of objects and calculus

Procedure:

1. Decide for a set of objects to start from.

2. Construct an equivalence relation.

3. Set of new objects <=> set of equivalence classes.

4. For each equivalence class, decide for one object that will represent the
class (called the class representative).

5. Construct a function  that ”reduces” an object to its class repre-
sentative.

• We now have a new set of objects which we can manipulate in more or less
the same way as the original objects (e.g add and multiply).

• The new objects have properties inherited from the original objects. They
also have some new properties that come from the equivalence relation.

Reduce .( )

Theory

t.1



Integers

Objective: Split integers in two parts - quotient and remainder after
division by 3.

Procedure:
1. Z
2.
3. New objects: .
4. Representatives:
5.

Example:
(in Z)
( )

The new objects can be treated the same way as integers, but by using the
Reduce function we mask away the quotient part and only considers the rema-
inder part.

a b a mod 3 b mod 3=⇔∼
… 3 0 3 …,,,–,{ } … 2 1 4 …,,,–,{ } … 1 2 5 …,,,–,{ },,

0 1 2,,
Reduce a( ) a mod 3=

2 8+ 10=
mod 3 Reduce 2 8+( ) Reduce 10( ) 1= =

Reduce Reduce 2( ) Reduce 8( )+( ) Reduce 2 2+( ) Reduce 4( ) 1= = =

Theory

t.2

Univariate polynomials

Objective: Split polynomials in two parts - quotient and remainder after

division by .

Procedure:
1.
2.

3. New objects:

,

,

,

4. Representatives:
5.

q x2=

R X[ ]
p1 a1q r1 p2 a2q r2+=+=

p1 p2 r1⇔∼ r2=

3x x2 3x x3 x2 3x+ + …,,+,{ }

x 6+ x2 x 6+ + 7x2 x 6 …,+ +, ,{ }

18x 2x2 18x+ 3x3 x2 18x …,+–, ,{ }
…

3x x 6+ 18x, ,
Reduce p( ) p polmod q=

Theory

t.3.1



Univariate polynomials

Example:

(in )

( )

The new objects can be treated the same way as ordinary polynomials, but by
using the Reduce function we mask away the quotient part and only considers
the remainder part.

R X[ ] x2 3x+( ) x 6+( )⋅ x3 9x2 18x+ +=

polmod x2 Reduce x2 3x+( ) x 6+( )⋅( ) Reduce x3 9x2 18x+ +( ) 18x= =

Reduce Reduce x2 3x+( ) Reduce x 6+( )⋅( ) Reduce 3x( ) x 6+( )⋅( )=

Reduce 3x2 18x+( ) 18x==

Theory

t.3.2

Multivariate polynomials

Objective: Split polynomials in two parts - quotient and remainder after

”division” by  and . ”Division” in this case means
to write a polynomial as a linear combination of ,  and, in most cases, a
remainder:

The new object will in this case be .
Procedure:
1.
2.

But how do we write a polynomial as a linear combination of the base poly-
nomials?
When we had only one univariate base polynomial we could use polynomial
division.
We need to generalize polynomial division to cover several and multivariate
base polynomials!

q1 x2y y2+= q2 xy2 x2+=
q1 q2

p a1q1 a2q2 r+ +=

r

R X Y,[ ]
p1 a11q1 a12q2 r1+ += p2 a21q1 a22q2 r2+ +=

p1 p2 r1⇔∼ r2=

Theory
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Theory
Reduction

To reduce

To reduce one polynomial  with another polynomial  in this case means to
subtract a multiple of  from :

Example:

We can reduce  with  and have

This reduction of  to  is written as

and  is our ”new object”.

p q
q p

r p aq–=

p 2x3y2 2x2y 7y+ += q x2y x+=

p 2xy q⋅ 2x3y2 2x2y+=

r p 2x2y q⋅– 7y= =

p r→

p r

7y

t.4.2.1

Theory
Reduction

Set of reducers

Given a polynomial  and a set of polynomials (”reducers”) , we want to
know which, if any, polynomials in  that can reduce .

This is called the ”reducer set” and is calculated as

Example:

Then

p Q
Q p

R p Q,( ) q Q 0{ }–∈ such that hterm q( ) hterm p( ){ }=

p xy= Q x y xy z x2y, , , ,{ }=

R p Q,( ) x y xy, ,{ }=

t.4.2.2



Theory
Reduction

Reduction algorithm

procedure Reduce(p,Q)

q:=0;
while p!=0 do

while R(p,Q)!={} do
q:=selectpoly(R(p,Q));
a:=hmon(p)/hmon(q);
p:=p-a*q;

end;
r:=r+hmon(p);
p:=p-hmon(p);

end;
return(r);

t.4.2.3

Theory
Reduction

Example
Let

and

In the first iteration we have

If we choose  we get  and . We can not reduce any further so
our new object is .
If we choose  we get  and . We can not reduce any further so
our new object is .

If we begin with  we can not reduce anything at all. But

since  is a linear combination of  and  it should reduce to zero!

q1 xy x q2 xy y+=+=

p xy x y+ +=

R p Q,( ) q1 q2,{ }=

q1 a 1= p y=
y

q2 a 1= p x=
x

p q1 q2– x y–= =

p q1 q2

t.4.2.4



Theory
Multivariate polynomials

The last example demonstrated several weaknesses with our reduction algo-
rithm:

• The result is not unique. Depending on how we implement selectpoly we
can end up with different decompositions.
Both decompositions are correct, but it would be nice if there was only one
possible result (one posible ”new object”).

• The reduction algorithm cannot reduce every polynomial that is reducible (or
should be reducible).

Is the reduction algorithm useless?

Lets try to modify the base. We extend the base with the linear combination
 and see what happpens.q1 q2–

t.4.2.5

Theory
Reduction

Example (continued from p t.4.2.4)
Let

and

In the first iteration we have

If we choose  we get  and . We can not reduce any further so
our new object is .
If we choose  we get  and . We can reduce further and our new
object is  which is the same (new) object!

If we begin with  we can reduce to zero in one step.

q1 xy x q2 xy y q3 x y–=+=+=

p xy x y+ +=

R p Q,( ) q1 q2 q3, ,{ }=

q1 a 1= p y=
y

q2 a 1= p x=
x x y–( )– y=

p q1 q2– x y–= =

t.4.2.6



Multivariate polynomials

As we have seen, there are some serious problems with the reduction algo-
rithm. We solved the problems by modifying the base.

As it turns out, the problems are not related to the algorithm, but rather to the
structure of the ”base” (the ”base polynomials” ).

With the help of another algorithm, Buchbergers algorithm, a base consis-
ting of a number of polynimials can be transformed into a Gröbner base.
Buchbergers algorithm will extend a given base with certain new elements,
much in the same way as we did in the last example. Such a modified base will
give us a different decomposition but the same result (same new object, same
remainder).

It can be proved that the reduction algorithm will be gaurenteed to always work
on any Gröbner base, and since there for every polynomial base exists one
unique Gröbner base that is always computable (in finite time) , we can use
the reduction algorithm to decompose a polynomial!

q1 q2 …, ,

Theory

t.4.4

Theory
Buchbergers algorithm

procedure Gbasis(P)

G:=P;
k:=length(G);
B:={[i,j]:1<=i<j<=k};
while B!={} do

[i,j]:=selectpair(B,G);
B:=B-{[i,j]};
h:=Reduce(Spoly(G[i],G[j]),G);
if h!=0 then

G:=G union {h};
k:=k+1;
B:=B union {[i,j]:1<=i<k};

end;
end;
return(G);

t.4.5.1



Multivariate polynomials

3. New objects (continued from page t.4.1)

,

,

,

4. Representatives:

5.

3x 3x x2y y2+ + 3x x3y xy2+ + …, , ,{ }

y 6 y 6 xy2 x2+ + + 6 y xy3 x2y+ + + …, , ,+{ }

3xy 18x+ 3xy 18x x2y y2 …,+ + +,{ }
…

3x y 6+ 3xy 18x+, ,

Reduce p( ) Reduce p Gbasis q1 q2,{ }( ),( )=

Theory

t.4.6

Multivariate polynomials

Using Gröbner Bases we can…

…construct objects with customized properties.

…enumerate/construct a basis for the new objects.

…perform operations on the new objects by lifting objects to the original
domain, performing the operation and reduce the result back to the
new domain.

Theory

t.5



The Work

1. Goals with the project

2. How to execute the project

3. How to organize the material

a

Goals

• Texts about Gröbner Bases can roughly be divided into two categories:
(1) Introductions requiring almost no mathematical background.
(2) Complete texts on a graduate level.
The goal for this project was to write a textbook about Gröbner bases. It
should be accessible to anyone with a M.Sc degree (mechanical enginee-
ring, industrial and management engineering, ...), and at the same time be
mathematically correct.

• It should also teach the reader some basic ”mathematical thinking”. For
example, in the beginning there will be a lot of explanations of what is going
on.

• It should be easy to read and understand without loosing mathematical pre-
cision.

The work

a.1



Execution of the project
The work

a.2.1

Task one
Task two

Task three
Task four
Task five
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Iteration

Execution of the project

• Underestimated the time required for ”put together”.

• Good utilization of time when working in parallell.

• During the ”work phase” I was often unsure about how far the total work had
proceeded.

The work

a.2.3



How to organize the material
The Work

a.3

Elements

Canonical forms

Orders/relations
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Can be used in two ways:

1.Chapter order: General -> Rings -> Polynomials -> Reduction
2.Subject order: Orders/relations -> Elements -> Canonical forms

Appendix

• Software for calculating with Gröbner bases.

• Gröbner bases in Maple.

• Sites on the WWW dedicated to Gröbner bases.
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Software

• Maple (commercial)
Package ”grobner”. See help browser under ”Mathematics/Algebra/Poly-
nomials/Grobner Bases.

• MuPAD (free)
Multi Processing Algebra Tool
Public domain. Comparable to Maple.
http://math-www.uni-paderborn.de/MuPAD/

• SACLIB (free)
Symbolic Algebraic Computation LIBrary. A C-library for performing symbo-
lic computation.
http://www.can.nl/SystemsOverview/Special/Algebra/
SACLIB.html

• Groebner (free)
A C-library for computing with Gröbner bases.
http://www.can.nl/SystemsOverview/Special/Algebra/GRO-
EBNER/productinfo.html

• Macaulay (free)
Algebraic geometry and computer algebra
http://www.math.uiuc.edu/Macaulay2/

Appendix
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Gröbner Bases in Maple

Function in this tutorial Function in Maple

grobner[leadmon]

grobner[normalf]

grobner[gbasis]

grobner[spoly]

hterm .( )

Reduce .( )

Gbasis .( )

Spoly .( )

Appendix
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WWW sites

• RISC
Research Institute for Symbolic Computation.
Directed by Prof. Bruno Buchberger, the inventor of Gröbner bases.
http://www.risc.uni-linz.ac.at/

• CAIN
Computer Algebra Information Network
Information service dedicated to computer algebra.
http://math-www.uni-paderborn.de/CAIN/

• My home page where my work on Gröbner Bases can be found (including a
textbook in swedish).
http://www.ludd.luth.se/~per/GB/

Appendix
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